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Abstract
Background: Triticum monococcum (2n = 2x = 14) is an ancient diploid wheat with many useful traits and
is used as a model for wheat gene discovery. DArT (Diversity Arrays Technology) employs a hybridisation-
based approach to type thousands of genomic loci in parallel. DArT markers were developed for T.
monococcum to assess genetic diversity, compare relationships with hexaploid genomes, and construct a
genetic linkage map integrating DArT and microsatellite markers.

Results: A DArT array, consisting of 2304 hexaploid wheat, 1536 tetraploid wheat, 1536 T. monococcum
as well as 1536 T. boeoticum representative genomic clones, was used to fingerprint 16 T. monococcum
accessions of diverse geographical origins. In total, 846 polymorphic DArT markers were identified, of
which 317 were of T. monococcum origin, 246 of hexaploid, 157 of tetraploid, and 126 of T. boeoticum
genomes. The fingerprinting data indicated that the geographic origin of T. monococcum accessions was
partially correlated with their genetic variation. DArT markers could also well distinguish the genetic
differences amongst a panel of 23 hexaploid wheat and nine T. monococcum genomes. For the first time,
274 DArT markers were integrated with 82 simple sequence repeat (SSR) and two morphological trait
loci in a genetic map spanning 1062.72 cM in T. monococcum. Six chromosomes were represented by single
linkage groups, and chromosome 4Am was formed by three linkage groups. The DArT and SSR genetic loci
tended to form independent clusters along the chromosomes. Segregation distortion was observed for
one third of the DArT loci. The Ba (black awn) locus was refined to a 23.2 cM region between the DArT
marker locus wPt-2584 and the microsatellite locus Xgwmd33 on 1Am; and the Hl (hairy leaf) locus to a 4.0
cM region between DArT loci 376589 and 469591 on 5Am.

Conclusion: DArT is a rapid and efficient approach to develop many new molecular markers for genetic
studies in T. monococcum. The constructed genetic linkage map will facilitate localisation and map-based
cloning of genes of interest, comparative mapping as well as genome organisation and evolution studies
between this ancient diploid species and other crops.
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Background
Triticum monococcum (2n = 2x = 14), generally known as
einkorn wheat, is an ancient diploid species domesticated
in the Fertile Crescent ~10,000 years ago ([1]. This species
dominated human farming activities in the Neolithic
period. However, the cultivation area gradually decreased
during the Bronze Age due to domestication of tetraploid
and hexaploid wheat [2]. In modern times T. monococcum
remains cultivated at low scale only in the mountainous
areas of several Mediterranean countries. This species has
not been bred intensively and therefore retained its
genetic diversity [3].

Wild relatives of hexaploid wheat are known to be impor-
tant sources of traits for wheat genetic improvement. T.
monococcum (AmAm) is closely related to T. urartu (AuAu),
the donor of the A-genome of hexaploid wheat [4-6].
Recently, T. monococcum has gradually been recognised as
an attractive diploid model for exploitation of useful
traits, discovery of novel genes and variant alleles, and
functional genomics. Many traits have been examined in
T. monococcum which can be useful for modern wheat
breeding [7-9]. T. monococcum has also been successfully
used for gene discovery in a subgenome map-based clon-
ing approach, as exemplified by the cloning of the leaf rust
resistance gene Lr10 [10,11], the vernalisation genes
VRN1 and VRN2 [12,13], the domestication locus Q
[14,15], and a member of the senescence and nutrient
remobilisation controlling NAC gene family [16]. Natural
and artificially mutagenised T. monococcum populations
have been made available and were used to identify and
map genes of agronomic importance [17,18]. Further-
more, TILLING (Targeting Induced Local Lesions IN
Genomes) and VIGS (Virus Induced Gene Silencing) plat-
forms for functional genomics are under development in
several laboratories (http://www.wgin.org.uk; http://
www.plantsciences.ucdavis.edu/dubcovsky). Thus, in the
foreseeable future T. monococcum is expected to play an
important role in wheat genetic and genomic studies.

Globally, thousands of accessions of T. monococcum have
been collected and retained in major germplasm stock
centres. In order to use T. monococcum resources efficiently
in programmes on genetic improvement of hexaploid
wheat, it is necessary to assess diversity of this species at
the genome level. For this, high-throughput molecular
marker technologies are needed. T. monococcum has been
shown to possess a high level of polymorphism at DNA
marker loci[19]. RFLP (Restriction fragment length poly-
morphism) and AFLP (Amplified fragment length poly-
morphism) markers have been developed and used for
generating genetic linkage maps and for mutation map-
ping, map-based cloning, and genome synteny compari-
sons [4,20-23]. These markers have also been used to
resolve the site of the T. monococcum domestication [1].

Microsatellite markers (also called simple sequence
repeats or SSRs) have been tested in T. monococcum in
comparison with hexaploid wheat and its A-genome
donor diploid species T. urartu. This information has been
used to produce a genetic map integrating RFLPs and SSRs
[24,25]. However, the aforementioned markers are prima-
rily gel-based and sequence-dependent. The cost per data
point, labour-intensive assay procedures and the limita-
tion of polymorphism of the current marker technologies
restricts their application to whole-genome scan
approaches such as large-scale genotyping of germplasm
collections, association mapping, pedigree analysis and
QTL (Quantitative Trait Loci) Mapping As You Go [26].

Diversity Arrays Technology (DArT) has been developed
as a sequence-independent and micro-array hybridisa-
tion-based marker system [27]. DArT generates medium-
density genome scans by scoring the presence versus
absence of DNA fragments in representations of genomic
DNA samples. It simultaneously determines hundreds to
thousands of polymorphic loci in a single assay [27,28].
Since its initial development in rice, DArT has been
employed in genetic mapping, genotyping and diversity
assessment in barley [28-31], Arabidopsis [32], cassava
[33], sorghum [34], hexaploid and durum wheat [35-38],
and approximately 30 other plant species (Diversity
Arrays Technolgy P/L, unpublished data). DArT has also
been used to study pan-genomic evolution in non-model
organisms [39] because of its high-throughput and cost-
effective nature.

We report here the results of a study aimed to (1) develop
a T. monococcum diversity array (DArT) for high-through-
put genome-wide genotyping, (2) assess the utility of the
DArT technology for analysis of genetic diversity in a rep-
resentative collection of T. monococcum accessions, (3)
compare the relationships between the Am-genome and
other Triticum genomes using DArT markers, (4) produce
a genetic linkage map for T. monococcum integrating DArT
and SSR markers, and (5) refine the genome locations of
two morphological trait loci.

Results
Array composition
A total of 1536 DArT clones were developed from a PstI/
TaqI representation generated from a mixture of DNA of
two T. monococcum accessions MDR002 and MDR308
[35]. These two accessions were the parents for a large
mapping population, which had previously been geno-
typed with SSR markers and used for mapping several
agronomically important traits [8,9]. In a parallel project,
a substantial number of DArT clones were developed from
genomic representations of other Triticum species with
different ploidy levels (Triticarte P/L, unpublished). We
combined clones from all projects to assemble a custom-
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designed array containing 1536 clones derived from the
two T. monococcum accessions, 2304 clones derived from
hexaploid wheats (including the Triticarte Wheat 2.3
array), 1536 clones derived from tetraploid durum wheat
(including the Triticarte Durum 2.0 array), and 1536
clones derived from 15 Iranian accessions of T. boeoticum
Boiss., which is the wild relative of T. monococcum (see
Additional file 1; Ali Mehrabi, unpublished data).

Genetic diversity amongst T. monococcum accessions 
revealed by DArT
The composite array was used to assess the genetic diver-
sity amongst sixteen T. monococcum accessions listed in
Table 1. They were pre-selected based on their geographi-
cal origins, useful traits, available molecular and genetic
tools, as well as genetic relationships assessed using SSR
fingerprinting [8].

In total, 846 DArT markers were identified as polymor-
phic amongst the 16 accessions. Polymorphism Informa-
tion Content (PIC) values for these markers were
relatively low, with only 35.5% of DArTs having PIC val-

ues of 0.4-0.5 and 34.6% with PIC values < 0.2 (Table 2).
The average mean PIC value was 0.31. When the quality
of the DArT markers (measured as the % of total variance
in hybridisation intensity between the two clusters:
present and absent) was analysed against their perform-
ance, which is determined through call rate and PIC val-
ues, more than half of the polymorphic DArT markers (n
= 439) were in the 90-100% quality category with an aver-
age PIC value of 0.34 and call rate of 99.8%, respectively
(Table 3). The average PIC value decreased with the aver-
age quality value. PIC values were > 0.30 when the marker
quality was > 80%. However, PIC values were reduced to
0.24, 0.13 and 0.12 for markers with the quality values of
70-80%, 60-70% and 50-60%, respectively.

This set of polymorphic DArT markers was used to assess
the genetic diversity of the 16 T. monococcum accessions. A
Jaccard similarity matrix was generated and used to con-
struct a principal coordinate plot deciphering the genetic
relationships among the accessions (Figure 1). The first
two principal coordinates derived from the scores jointly
explained 23.74% of the total data variance. There was a

Table 1: T. monococcum accessions used in this study

Accession Variety Origin Country Year of collection Growth habit Donors Resources

MDR001 flavescens Algeria - Spring JIC6 Transformable12

MDR002 atriaristatum Balkans - Spring JIC Transformable12, mapping 
population

MDR024 hornemannii; flavescens Chechen 1904 Spring VIR7

MDR037 macedonicum Armenia 1934 Spring VIR
MDR040 vulgare; macedonicum Bulgaria 1940 Spring VIR Mapping population
MDR043 vulgare Greece 1950 Spring VIR Mapping population
MDR044 hornemannii Turkey 1965 Spring VIR Mapping population
MDR045 vulgare Denmark 1970 Spring VIR
MDR046 atriaristatum/macedonicum Romania 1970 Spring VIR
MDR047 macedonicum; vulgare Hungary 1970 Winter VIR
MDR049 pseudohornemannii Iran Winter VIR
MDR0501 Italy Spring JIC EMS mutagenised population13

MDR217 Turkey Spring USDA8 Mapping population
MDR229 Spain Spring USDA Mapping population
MDR3082 Italy Spring UC Davis9 BAC library, genetic map, EST 

library, mapping populations
MDR6503 Iran USDA
MDR6524 Turkey ACPFG10 Mapping populations
MDR6575 ? MPI11 Mapping populations

1Selection from a cross between T. monococcum and T. sinskajae (Korzun et al., 1998) [42].
2T. monococcum DV92; provided by Jorge Dubcovsky, UC Davies, USA.
3T. monococcum PI 355520 from USDA, ARS, USA.
4T. monococcum AUS16273-2; provided by Dr. Yuri Shavrukov, ACPFG, Australia.
5T. monococcum L118; provided by Benjamin Killian, MPI, Cologne, Germany.
6John Innes Centre, Norwich, United Kingdom.
7N. I. Vavilov Institute of Plant Industry, St. Petersburg, Russian Federation.
8United States Department of Agriculture, Agricultural Research Service, Aberdeen, ID, USA.
9University of California, Davis, CA, USA.
10Australian Centre for Plant Functional Genomics, Canberra, Australia.
11Max Planck Institute, Cologne, Germany.
12Huw Jones, Rothamsted Research, Harpenden, UK, personal communication.
13Kay Denyer, John Innes Centre, UK, personal communication.
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clear separation for most of the T. monococcum accessions
and partial correlations between genetic relationships and
geographic origins. The accession MDR650 (PI 355520)
of Iranian origin was fairly distantly related to other acces-
sions including most of the accessions of European origin.
This accession is unique in its ability to produce fertile F1
hybrids with hexaploid wheat [40]. MDR650 is also a
known source of resistance to leaf rust [41] and provides
resistance to a range of other wheat pathogens (HCJ and
KHK, unpublished). Our previous diversity study using
SSR fingerprinting has shown that another Iranian acces-
sion MDR049 also formed an independent clade [8]. Fur-
thermore, in the current study MDR308 and MDR043
were clustered close to each other and were distant to
MDR002. Amongst the 14 analysed accessions there were
two accessions with unusual pedigrees. MDR050 is an
inbred line derived from a cross between T. monococcum
and Triticum sinskajae [42], whereas MDR657 (L118) is a
recombinant inbred line generated by several rounds of
crosses and backcrosses between Triticum boeoticum and
Triticum urartu (B. Kilian, personal communication).

Relationships between the genomes of T. monococcum 
and related Triticum spp
As described above, the custom-designed DArT array con-
tained clones developed from the T. monococcum genome
and clones derived from the genomes of other Triticum
species. This allowed us to assess (1) the degree of genetic
similarity/diversity between different T. monococcum
accessions, and (2) the relationships between the genome
of T. monococcum and the A-genomes of other closely
related Triticum species. Analysis of the 16 T. monococcum
accessions revealed that 317 of the 1536 of DArT markers
(~20%) developed from T. monococcum accessions
MDR002 and MDR308 were polymorphic (Table 4). In
this set of T. monococcum accessions ~10% of DArT mark-

ers derived from the genomes of hexaploid and tetraploid
wheat were polymorphic, whereas only ~8.2% of DArTs
derived from T. boeoticum were polymorphic. The latter
markers also displayed the lowest PIC values. A similar
trend was observed for the polymorphic DArT markers in
the F2 mapping population derived from MDR308 ×
MDR002 cross (see below). Overall, the DArT markers
developed from T. monococcum genome were found to be
more informative than those developed from the
genomes of other related Triticum species.

To test the power of the DArT markers of different origins
in resolving the T. monococcum relationships, the 846 pol-
ymorphic DArT markers were split according to their
genome origins and principal coordinate analyses were
carried out using the four subset data. The percentages of
total data variance explained by the first two coordinates
were 27.75% in hexaploid wheat, 23.96% in tetraploid
wheat, 35.26% in genomes of T. boeoticum, and 35.77% in
T. monococcum, respectively (Figure 2). These principal
coordinate similarity matrices had a correlation coeffi-
cient between 0.73-0.94 in describing the relationships
among these T. monococcum accessions (Table 5). The
Mantel test [43] indicated that the matrices are highly sig-
nificantly associated (all the p = 0.000, less than 0.001).

To further analyse the relationships of the genomes of T.
monococcum and those of hexaploid wheat, we simultane-
ously hybridised the genomes of nine T. monococcum
accessions and 23 hexaploid wheat varieties of European,
American and Chinese origins to a customised Triticarte
DArT array (see Additional file 2). The ploidy levels of the
genomes did influence the scoring and hence the raw data
was analysed to identify DArT markers which were not
affected by this genome context-dependent scoring. As
shown in Table 6, 1036 DArT markers were reliably
scored, of which 696 markers were polymorphic in hexa-
ploid wheat genomes but were commonly present or
absent in T. monococcum genomes; whilst 238 markers
were polymorphic in T. monococcum genomes but were
monomorphic in hexaploid genomes. However, there
were 102 DArT markers which were polymorphic in the
genomes of both ploidy. The principal coordinate plot
constructed using these DArT markers showed that 38%
of the variation was explained by the two-dimensional
analysis (Figure 3). The plot showed a good separation of

Table 2: Polymorphism information content (PIC) values for 846 
DArT markers developed from T. monococcum genome.

PIC value Number of DArTs % total DArTs

0.5-0.4 300 35.5
0.4-0.3 131 15.5
0.3-0.2 122 14.4
0.2-0.1 161 19
0.1-0.0 132 15.6

Table 3: The relationship between the quality and the performance of the 846 DArT markers developed from T. monococcum 
genome.

Quality (%) 100-90 90-80 80-70 70-60 60-50 Grand mean

Number of markers 439 237 112 43 15 846
Call rate 99.8 ± 1.2 98.8 ± 2.8 97.9 ± 3.7 99.0 ± 2.5 99.3 ± 2.0 99.2 ± 2.4
PIC 0.34 ± 0.14 0.32 ± 0.14 0.24 ± 0.14 0.13 ± 0.03 0.12 ± 0.02 0.31 ± 0.15
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the genomes with different ploidy levels and the genomes
within each ploidy level.

Genetic mapping of DArT and microsatellite (SSR) loci
To confirm that DArT markers were inherited in a Mende-
lian manner, we constructed a linkage map for a cross
between T. monococcum accessions MDR308 and MDR002
[8]. Hybridising the array with a total of 94 F2 progeny
from this cross as well as the two parental accessions iden-
tified 300 polymorphic DArT markers: 133, 71, 61 and 35
were derived from genomes of T. monococcum, hexaploid
wheat, tetraploid wheat, and T. boeoticum, respectively
(Table 4). The same T. monococcum mapping population
was also genotyped using microsatellite markers mapped
to the A sub-genome of hexaploid wheat [44]. Out of 274
microsatellite markers analysed, 90 (32.8%) were poly-
morphic between the two parental T. monococcum acces-
sions MDR002 and MDR308. Rates of polymorphism for
different types of microsatellite markers were as follows:
WMC - 41.9% (36 polymorphic markers out of 86 exam-
ined), CFA and CFD - 39.3% (11 out of 28), BARC mark-
ers - 38.2% (21 out of 55), GDM and WMS - 33.7% (28
out of 83), and DuPw - 13.6% (3 out of 22). The data for
DArT and microsatellite markers were merged for con-
struction of a genetic linkage map for T. monococcum.

Map length and genome coverage
In total, 356 (274 DArTs and 82 SSRs) molecular markers
were mapped and formed nine linkage groups (Figure 4).
Some DArT and microsatellite markers were removed
from the data during the map construction due to a lack
of linked anchor markers. The two morphological traits,
namely awns colour and leaf hairiness, were found to seg-
regate in a 1:3 ratio in the MDR308 × MDR002 T. mono-
coccum mapping population. Therefore, these traits are
thought to be controlled by single genes Ba (black awn)
and Hl (hairy leaf) and were also included in the linkage
analysis (see below). The linkage map derived from the
combined data set spanned 1062.72 cM, with an average
length of 151.82 cM per chromosome and an average den-
sity of one marker per 2.97 cM. Each of the seven chromo-
somes contained both DArT and SSR markers. Six of the
linkage groups corresponded to six T. monococcum chro-
mosomes, but the chromosome 4Am was formed by three
linkage groups.

Marker distribution amongst chromosomes
Various numbers of DArT and SSR markers were mapped
to individual chromosome linkage groups (Table 7).
Chromosome 4 Am contained the lowest numbers (n =
34) of the molecular markers, while the highest numbers

Principal coordinate analysis of 16 T. monococcum accessions based on 846 DArT markersFigure 1
Principal coordinate analysis of 16 T. monococcum accessions based on 846 DArT markers. The accession codes 
and their sites of collection are inserted in the figure. The diagram shows the position of each accession in the space spanned 
by the first two coordinates of a relative Jaccard similarity matrix.
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(n = 68) were found on chromosome 7 Am. Kolmogorov-
Smirnov tests were performed to compare nonparametri-
cally the equality of the distributions of the DArT and SSR
markers along individual chromosomes. The results
showed that chromosomes 1Am, 3Am, 5Am, 6Am and 7Am

had p-values smaller than 0.05 but chromosomes 2Am and
4Am had larger p-values. These results suggest that DArT
and SSR tended to form independent clusters on chromo-
somes in T. monococcum.

Distribution of DArT markers derived from genomes of different 
Triticum species
The mapped 274 polymorphic DArT markers were
derived from T. aestivum, T. durum, T. monococcum and T.
boeoticum. Figure 5 shows the numbers of the four cate-
gory DArT markers and SSR markers on the seven chromo-
somes. Chi-square goodness-of-fit test of associations
between origins of DArT markers and T. monococcum link-
age groups showed that the distribution of DArT markers
arising from different genomes and SSR markers was at
random across chromosomes (Pearson χ2 = 27.49 with 34
d.f., probability level under null hypothesis p = 0.778).
However, in some cases, DArT markers of certain origins
were either over- or under-numbered. For instance, the
related A genome DArT markers were under-represented
on chromosomes 3Am, but over-represented on 7Am.

Fifty-eight of these markers are with known locations in
genomes of hexaploid and tetraploid wheat (Triticarte P/

L, unpublished); only 33 are of A-genome origins (Table
8), suggesting that B and D genomes of other Triticum spe-
cies could provide substantial polymorphic information
in the Am genome of T. monococcum. Each of the seven T.
monococcum chromosomes carried loci of the DArT mark-
ers that were previously mapped to homoeologous chro-
mosomes in the B- or D-genomes of Triticum species
(Figure 4). Also, the map positions of some of the A-
genome derived DArTs determined in our study disagreed
with those obtained in previous studies. For instance,
some of the markers thought to map to 4A and 7A in hex-
aploid and tetraploid wheat were mapped to the chromo-
some 2Am in T. monococcum, whereas some other DArTs
thought to map to 7A in hexaploid and tetraploid wheat
were mapped to either 4Am or 5Am in our study (Table 8,
and Figure 4).

Segregation distortion
In total, 156 markers were significantly distorted from the
expected Mendelian segregation ratios (P < 0.05). These
were more or less equally distributed across the genome
(Figure 6). The chromosomes 1Am, 2Am, 3Am, 4Am, 5Am,
6Am and 7Am contained 37.8% (17/37), 43.5% (30/69),
46.2% (24/52), 38.2% (13/34), 30.4% (17/56), 30.9%
(13/42) and 14.7% (10/68) of markers displaying strong
allelic frequency distortion, respectively. For some mark-
ers the segregation distortion was in favour of alleles orig-
inating from the male parent MDR002, whereas for other
markers the segregation distortion was in favour of alleles

Table 4: Number and feature of polymorphic DArT markers identified in this study

Hexaploid wheat Tertraploid wheat T. boeoticum T. monococcum

Total DArT 2304 1536 1536 1536

Polymorphic among 16 accessions 246 (10.68%) 157 (10.22%) 126 (8.20%) 317 (20.64%)
Mean quality (%) 86.3 ± 9.6 86.7 ± 9.3 85.0 ± 10.6 88.7 ± 8.8
Mean call rate (%) 99.3 ± 2.1 99.1 ± 2.1 99.3 ± 2.1 99.1 ± 2.6
Mean PIC 0.30 ± 0.14 0.32 ± 0.15 0.29 ± 0.15 0.32 ± 0.14

Polymorphic between MDR002 and MDR308 71 (3.08%) 61 (3.97%) 35 (2.28%) 133 (8.66%)
Mean quality (%) 84.1 ± 6.0 83.3 ± 4.6 82.3 ± 4.9 85.3 ± 5.6
Mean call rate (%) 93.8 ± 3.6 93.5 ± 2.8 93.1 ± 2.7 94.6 ± 3.0
Mean PIC 0.42 ± 0.06 0.43 ± 0.05 0.43 ± 0.04 0.40 ± 0.07

Table 5: Correlation between pairs of similarity matrices describing the relationships of T. monococcum accessions generated by using 
DArT markers from different origins.

Whole DArT set Hexaploid Tetraploid T. monococcum T. boeoticum

Whole DArT set *
Hexaploid 0.92 (0.000) *
Tetraploid 0.87 (0.000) 0.76 (0.000) *
T. monococcum 0.94 (0.000) 0.79 (0.000) 0.75 (0.000) *
T. boeoticum 0.86 (0.000) 0.75 (0.000) 0.73 (0.000) 0.73 (0.000) *

Numbers between parentheses are the p-values for testing the null hypothesis of no association by Mantel test.
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originating from the female parent MDR308 (Figure 4).
The predominant alleles on the chromosomes 1Am and
2Am were from MDR308, whereas those on 4Am were from
MDR308. Chromosomes 3Am, 4Am, 5Am, 6Am and
7Aomum contained marker alleles originating from either
male of female parents, displaying frequencies skewed
from their Mendelian expectations.

Fine-mapping of morphological trait loci
In T. monococcum, black awns and hairy leaves are two
morphological traits known to be controlled by single

dominant genes Ba and Hl, respectively. Our previous
genetic study revealed a linkage between Ba and the SSR
locus Xwmc336 on 1Am, and between Hl and the SSR locus
Xcfd39 on 5Am [8]. These two traits segregated in MDR002
× MDR308 F2 mapping population as single independent
loci and therefore it was possible to refine the positions of
Ba and Hl in T. monococcum genome. Previous estimations
showed that the genetic distance was 21.5 cM between Ba
and Xwmc336, and 17.4 cM between Hl and Xcfd39. Link-
age analysis combining SSR and DArT markers confirmed
that Ba was located at 80.09 cM on 1Am between the DArT

Principal coordinate analysis of 16 T. monococcum accessions based on the DArT markers from T. monococcum as well as from diploid, tetraploid and hexaploid Triticum speciesFigure 2
Principal coordinate analysis of 16 T. monococcum accessions based on the DArT markers from T. monococcum 
as well as from diploid, tetraploid and hexaploid Triticum species. The diagrams show the positions of individual acces-
sions in the space spanned by the first two coordinates of a relative Jaccard similarity matrix. The relationships depicted by the 
four matrices are highly associated as indicated by the Mantel test (see text for details).

MDR217

MDR044

0.5

0.4

8%
)

Hexaploid MDR044MDR002

0.3

0.4

0.
89

%
) Tetraploid

MDR650

MDR652

MDR045MDR308

MDR217

MDR002

0.1

0.2

0.3

rd
in

at
e 

2 
(1

0.
38

MDR650

MDR652

MDR024

MDR045
MDR217

0.1

0.2

0.3

co
or

di
na

te
 2

 (
1

MDR650

MDR043

MDR040

MDR229

MDR037

MDR024

MDR657

-0.2

-0.0

-0.1

P
rin

ci
pa

l c
oo MDR043

MDR040

MDR037

MDR308

MDR001MDR657

-0.2

-0.1

-0.0

P
rin

ci
pa

l

MDR229
MDR050

MDR046
MDR001

-0.4

-0.3

0.30.1-0.1-0.3 0.40.0-0.2 0.2

Principal coordinate 1 (13.35%)

MDR229 MDR050

MDR046

0.4

-0.3

0.2-0.0-0.2-0.3 0.3-0.1 0.1

Principal coordinate 1 (13.07%)

MDR650
0.6

0.4

0.5

0%
)

T. monococcum
MDR043

MDR308

MDR217
MDR0460.2

0.3

97
%

)
AA relatives

MDR652

MDR044

MDR002
0 1

0.2

0.3

oo
rd

in
at

e 
(1

1.
50

MDR652

MDR040

MDR229

MDR037

MDR050

MDR024

MDR045-0 1

0.0

0.1

or
di

na
te

 2
 (

11
.9

MDR043

MDR040

MDR050

MDR024

MDR045

MDR308MDR217

MDR001

-0.1

0.1

-0.0

P
rin

ci
pa

l c
o MDR045

MDR044
MDR002

MDR001

MDR657

-0.3

-0.2

0.1

P
rin

ci
pa

l c
oo

MDR229
MDR037MDR046

MDR657

-0.4

-0.2

0.30.1-0.1-0.3 0.40.0-0.2 0.2
Principal coordinate 1 (14.27%)

MDR650

0.4

-0.4

0.2-0.0-0.2-0.3 0.3-0.1 0.1
Principal coordinate 1 (12.29%)
Page 7 of 17
(page number not for citation purposes)



BMC Genomics 2009, 10:458 http://www.biomedcentral.com/1471-2164/10/458
marker locus wPt-2584 at 60.59 cM and the SSR locus
Xgwmd33 at 83.76 cM, and Hl was located at 136.16 cM
on 5Am between the DArT marker loci 376589 at 134.84
cM and 469591 at 138.77 cM.

Discussion
The availability of a high density genetic linkage map for
a species is essential for identifying QTLs of interest, isola-
tion of genes by map-based cloning, comparative map-
ping, and genome organisation and evolution studies
[45]. We have developed polymorphic DArT markers
from genome representations of two T. monococcum acces-
sions, 15 T. boeoticum, and hexaploid and tetraploid Triti-
cum species. The genetic linkage map of T. monococcum
constructed in this study is the first map integrating DArT
and SSR markers.

Determining genetic relationships between T. 
monococcum accessions and with hexaploid wheat 
varieties using DArT marker fingerprinting
DArT markers are typically developed from a representa-
tion which is generated from a pool of DNA samples from
a number of accessions, cultivars or breeding lines which
as a group cover the genetic diversity within a species or a
group of closely related species [27]. In the current study,
DArT markers were initially generated from genomic rep-
resentations of two T. monococcum accessions, parents of
an F2 mapping population. In addition, this study took
advantage of the existence of a large number of DArT
markers previously developed from hexaploid, tetraploid
and other diploid Triticum species.

The inclusion of DArT clones from various genomes
meant the average PIC value of the data set (0.31) was

lower than in comparable studies. For example, for barley,
sorghum and cassava the values obtained were 0.38, 0.41
and 0.42, respectively [28,33,34]. However, the data pro-
vided useful information for comparison of Triticum
genomes of different ploidy levels. In the genetic diversity
assessment of 16 T. monococcum accessions, 20.6% (317
out of 1536) of the DArT markers developed from the two
T. monococcum accessions were polymorphic. DArT mark-
ers developed from genomes of other Triticum species also
displayed good polymorphism frequencies (10.68%,
10.22% and 8.2% for markers developed from hexaploid,
tetraploid and diploid species, respectively) in T. monococ-
cum. In hexaploid wheat, 15.3% (788 out of 5137) of
DArT markers were found to be polymorphic when assess-
ing the genetic diversity of 13 Australian cultivars [35].
Similar studies in durum wheat and barley revealed only
9.6% and 10.4% of polymorphic DArTs, respectively
[28,36]. Thus, the group of 16 T. monococcum accession
genotyped in this study appeared to be more genetically
diverse than the bread and durum wheat collections
assayed in those studies. Furthermore, most of the DArT
markers whose genome locations have been determined
in previous studies were located on homoeologous chro-
mosomes of T. monococcum. Thus, DArT markers from
related genomes were also useful in probing genetic diver-
sity in T. monococcum. The custom-designed DArT array
developed here can be used in studies focusing on com-
parison of the T. monococcum genome with genomes of
other Triticum species.

Principal coordinate analysis of the 16 T. monococcum
accession revealed that the site of collection is only par-
tially correlated with genetic diversity. Most accessions
used in this study have been genotyped with SSR markers

Table 6: Comparison of DArT markers hybridised to T. monococcum and hexaploid wheat genomes

Numbers Quality Call Rate PIC Scored in T. 
monococcum

Scored in 
hexaploid 
wheat

Score in T. 
monococcum

Score in 
hexaploid 
wheat

Polymorphic in 
both ploidy

102 80.5 ± 6.9 96.6 ± 4.1 0.38 ± 0.1 Yes Yes 0.51 ± 0.32 0.45 ± 0.33

Present in diploid, 
polymorphic in 
hexaploid

358 80.3 ± 7.4 97.9 ± 2.7 0.41 ± 0.11 No Yes 1.00 ± 0.00 0.44 ± 0.27

Absent in diploid, 
polymorphic in 
hexaploid

338 82.0 ± 7.0 97.9 ± 2.5 0.44 ± 0.08 No Yes 0.00 ± 0.00 0.67 ± 0.24

Present in 
hexaploid, 
polymorphic in 
diploid

42 78.3 ± 11.0 96.9 ± 5.7 0.27 ± 0.12 Yes No 0.41 ± 0.29 1.00 ± 0.00

Absent in 
hexaploid, 
polymorphic in 
diploid

196 82.7 ± 10.0 96.9 ± 5.7 0.26 ± 0.11 Yes No 0.57 ± 0.28 0.00 ± 0.00
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in a previous study, and a similar pattern had been
observed [8]. Thus, DArT fingerprints are as useful for
resolving the genetic relationships in T. monococcum as
non-DArT based markers. One of the accessions, MDR650
(PI 355520) was found to be genetically distantly related
to other T. monococcum accessions, which raised a ques-
tion whether it is a true T. monococcum. However,
MDR650 (PI 355520) possesses the three major traits of
the domesticated einkorn wheat: larger and plumper
seeds, a tough rachis preventing spikelets falling apart at
maturity, and relatively easy threshing. These traits are
absent in the wild species T. boeoticum. We have crossed
MDR650 (PI 355520) with many other T. monococcum
accessions and discovered that the crossability could reach
100% (data not shown). Furthermore, MDR650 (PI
355520) did not cluster with hexaploid wheat and was
closer to the T. monococcum cluster. Thus, we still consider
MDR650 (PI 355520) an accession of T. monococcum.

The relationships between the Am-genome of T. monococ-
cum and those of hexaploid wheat T. aestivum and its sub-
genome donor, T. urartu have been studied in different

context. For instance, chromosome pairing and recombi-
nation were studied between homoeologous chromo-
somes 1A and 1Am, 3A and 3Am as well as 5A and 5Am and
were shown to be collinear and differentiated at sub-struc-
tural level [20,46]. Good micro-colinearity/colinearity at
particular genetic loci has also been reported [47,48].
Other studies as well as the present one demonstrate that
many A-genome molecular markers could also be used for
genetic studies in T. monococcum [24,25]. However, their
genome-wide use was not previously reported. The use of
DArT markers allowed us to assess the relationships in a
new perspective. We showed here that most of the DArT
markers which are polymorphic in T. monococcum were
either conserved or absent in hexaploid genomes, and vice
versa, indicative of divergence of the Am-genome from the
A-genome [25]. On the other hand, many DArT markers
originated from B- and D-genomes of hexaploid wheat
could hybridise to the T. monococcum genomes and pro-
vide the polymorphism information in T. monococcum.
Thus, at the homoeologous genomes level, there is a com-
plex relationship between T. monococcum and hexaploid
wheat.

Principal coordinate analysis of nine T. monococcum accessions and 23 T. aestivum varieties based on 102 DArT markersFigure 3
Principal coordinate analysis of nine T. monococcum accessions and 23 T. aestivum varieties based on 102 DArT 
markers. The diagram shows the position of each accession/variety in the space spanned by the first two coordinates of a rel-
ative Jaccard similarity matrix.
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T. monococcum genetic linkage maps
A T. monococcum genetic map has been previously con-
structed using MDR308 (DV92) as one of parental acces-
sions by Dubcovsky et al (1996) [21]. This map contains
335 markers, including RFLPs, isozymes, seed storage pro-
teins, rRNA, and various morphological loci. The total
length of this map is 1071.6 cM, the average chromosome
length is 153.1 cM, and the average marker density is one

marker per 3.2 cM. More recently, Singh et al (2007) [24]
used a T. boeoticum × T. monococcum RIL population to
construct another genetic linkage map integrating 177 SSR
and RFLP markers, and two morphological trait loci. The
total length of this map is 1262 cM, the average chromo-
some length is 180.3 cM, and the average marker density
is one marker per 7.05 cM. In comparison, our current
genetic map derived from linkage analysis of an F2 popu-

An integrated DArT and SSR genetic linkage map of T. monococcum. Figure 4
An integrated DArT and SSR genetic linkage map of T. monococcum. The vertical bars represent the chromosomes 
of T. monococcum. The codes on the left are the DArT and SSR marker loci, with corresponding map locations in accumulative 
genetic distance (cM; Kosambi) on the right. The discrete segments of the vertical chromosomal bars are colour-coded accord-
ing to the allele colour in the figure legends. He stands for alleles heterozygous for female (MDR308) and male (MDR002) alle-
les, c for the female (MDR308) alleles in homozygous or heterozygous forms, d for male (MDR002) alleles in homozygous or 
heterozygous forms, and - for unknown alleles, respectively.
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lation from a cross between MDR308 and MDR002 inte-
grates 274 DArT markers, 82 SSR markers and two
morphological trait loci. This map spans over 1062.7 cM,
with six chromosomes represented by single linkage
groups and chromosome 4Am by three groups of linked
markers. The average chromosome length is 151.8 cM,
and the average marker density in the genome is one
marker per 2.97 cM. Observed differences in lengths and
marker densities for the three T. monococcum linkage maps
may well be related to differences in the mapping popula-
tions, the types and error-rates of the genetic marker sys-
tems used, and/or the algorithms and mapping functions
used to compute genetic distances. For example, Singh et
al (2007) [24] used the Haldane's mapping function,
whereas the Kosambi's mapping function was used in
other cases.

The current genetic linkage is also very similar in length
and in marker densities to the A-genome maps of hexa-
ploid wheat constructed using the Kosambi's map func-
tion. In one case, 369 SSR markers were mapped onto a
944 cM A-genome with the marker density of one marker
per 2.56 cM [44]. In another study, 464 SSR markers were
mapped onto a 1231 cM A-genome with the marker den-
sity of one marker per 2.65 cM [49]. Recently DArT mark-
ers have also been developed and integrated with
conventional markers i.e. SSRs, RFLPs and AFLPs in hexa-
ploid wheat [35] and tetraploid wheat [36].

Genome organisation and segregation distortion
The Am-genome of T. monococcum is closely related to the
Au-genome of T. urartu and to the A-genome of the hexa-
ploid wheat [4-6]. This is reflected by the high transfera-
bility of SSR markers from hexaploid wheat to T.
monococcum and the overall good colinearity of SSR
arrangement along the chromosomes [8,24]. Gaps are fre-
quently observed in hexaploid wheat genetic linkage
maps making use of SSR, RFLP and AFLP markers [49-52].
Similarly, Singh et al (2007) [24] observed four large gaps
on linkage maps of chromosomes 2Am, 4Am and 7Am in T.

monococcum. In contrast, in our current linkage map for T.
monococcum there was only two gaps on chromosome
4Am. This suggests that DArT markers can be used to fill
the gaps and help generate higher resolution genetic link-
age maps.

Strong segregation distortion was observed during con-
struction of our current genetic linkage map for T. mono-
coccum. Over one third of the marker loci across the seven
chromosomes displayed allele frequencies skewed from
their Mendelian expectations. This was observed for both
DArT and SSR markers, with preferences for both parental
alleles. Segregation distortion has also been observed by
Dubcovsky et al (1996) [21] and Singh et al (2007) [24]
during construction of einkorn wheat genetic linkage
maps, regardless of the type of populations used. In one
study (Dubcovsky et al 1996) [21] 15% of the marker loci
displayed segregation distortion and were clustered on
chromosomes 1Am and 7Am, while in other study (Singh
et al 2007) [24] two major distorted regions were detected
on chromosome 2Am. Strong segregation distortion has
also been noted during the construction of durum wheat
and bread wheat linkage maps integrating SSR and DArT
markers [36].

Utility of DArT markers and the genetic linkage map in T. 
monococcum
The two parental T. monococcum lines, MDR308 and
MDR002, used for developing the F2 mapping population
had a number of contrasting traits including awn colour,
leaf pubescence, grain hardness, salt tolerance, as well as
resistance to the fungus Mycosphaerella graminicola and to
soil-borne cereal mosaic viruses [8,9,53]. We demon-
strated here that the constructed genetic linkage map
helped refine the chromosome regions spanning the Ba
and Hl trait loci. Also, this map was recently used to refine
the TmStb1 locus conferring resistance to M. graminicola
isolate IPO323 on chromosome 7Am, and to identify and
map new QTLs conferring salt tolerance (HCJ and KHK,
unpublished).

Table 7: Features of a genetic linkage map for T. monococcum integrating DArT and SSR markers

1Am 2Am 3Am 4Am 5Am 6Am 7Am Total

Total markers 37 69 52 34 56 42 68 358
DArT 25 50 41 27 42 35 54 274
SSR 11 19 11 7 13 7 14 82
Morphological trait locus 1 (Ba) 1(Hl) 2

Kolmogorov-Smirnov test 9.20 (0.011) 3.78 (0.151) 8.11 (0.017) 1.90 (0.386) 10.50 (0.005) 10.08 (0.006) 10.00 (0.007)

Length (cM) 143.02 202.69 146.69 144.4 166.06 130.19 129.67

Density (cM/marker) 3.87 2.94 2.82 4.24 3.01 3.1 1.96 2.97
Page 11 of 17
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MDR308 (also known as DV92), one of the parental lines
of the F2 mapping population used in this study, has pre-
viously been used for developing a range of molecular
tools including a genetic linkage map integrating RFLPs,
AFLPs and seed storage proteins [54], a BAC library [55],
and several populations of chemically- and radiation-
induced mutants http://www.wgin.org.uk. The availabil-
ity of DArT marker information for MDR308 (DV92) fur-
ther increases the utility of this accession.

In the near future it should be possible to link various
available genetic linkage maps of T. monococcum thereby
creating a frame work consensus map for wider applica-
tions in molecular genetics and genomics studies.

Conclusion
DArT is a rapid and efficient approach to develop many
new molecular markers for genetic studies in T. monococ-

cum. The constructed genetic linkage map will facilitate
localisation and map-based cloning of genes of interest,
comparative mapping as well as genome organisation and
evolution studies between this ancient diploid species and
other crops.

Methods
Plant material
This study used 16 T. monococcum accessions and an F2
population of 98 individuals derived from a cross
between accessions MDR002 and MDR308 [8]. The
detailed information about these accessions is also listed
in Table 1. In addition, 23 hexaploid wheat varieties col-
lected from UK, continental Europe, China and America,
or developed at CIMMYT, Mexico were used for genetic
diversity compassion. The information about these hexa-
ploid wheat varieties is provided in Additional file 2.

DArT procedure
The DNA was extracted from leaves of 2-week-old einkorn
wheat seedlings using the DNeasy Plant Mini Kit (QIA-
GEN) according to manufacturer's instructions. A set of
1536 new DArT clones were generated from a PstI/TaqI
representation of the MDR002 and MDR308 accessions as
described previously [28,36]. The new clones were printed
together with 2304 polymorphism-enriched clones from
hexaploid wheat, 1536 from tetraploid wheat, and 1536
from a group of 15 Iranian accessions of diploid T. boeoti-
cum (see Additional file 1). The resulting composite array
was then used to genotype the T. monococcum samples
using the standard DArT protocol [28,36].

Microsatellite assay
A total of 279 SSR markers mapped to the A-genome of
hexaploid wheat were tested for polymorphism between
the T. monococcum accessions MDR002 and MDR308.
These SSRs originated from 5 groups: 57 BARC markers
from the Beltsville Agricultural Research Centre, USA
[56,57], 29 CFA and CFD markers from INRA Clermont-
Ferrand, France [52,58,59], 24 DuPw markers from
DuPont company ([60] et al. 2002, DuPont, unpublished;
Dreisigacker et al. 2005), 85 GDM and WMS markers
from IPK Gatersleben, Germany [61,62], and 89 WMC
markers from the Wheat Microsatellite Consortium [63].
For each SSR primer pair, the 5'-end of the forward primer
was labelled with infra-red dye (IRD700 or IRD800, LI-
COR Biosciences UK Ltd). The PCR were carried out using
the PCR Master Mix (Promega) in a 10-μl reaction volume
containing 1× PCR Master Mix buffer, 0.1 μM forward and
reverse primers, and 20-30 ng plant DNA. Amplifications
were carried out in 96-well microtiter plates using a G-
storm Thermal Cycler (GS4/GS4s, Gene Technologies,
Essex, England). The programmes were 2 min at 94°C,
followed by 30-35 cycles of 30 s at 94°C, 30 s annealing
at 50-60°C (depending on the primer pairs), and 1 min at
72°C, and a final extension of 5 min at 72°C. The final

Chromosome distribution (A) of DArT markers developed from genomes of different Triticum species and SSR markers across the seven chromosomes of T. monococcum and the percentage (%) contributions (B) of the individual marker categories to the overall Chi-square values (Person χ2 = 27.49 at 34 d. f.; p = 0.778)Figure 5
Chromosome distribution (A) of DArT markers 
developed from genomes of different Triticum species 
and SSR markers across the seven chromosomes of 
T. monococcum and the percentage (%) contributions 
(B) of the individual marker categories to the overall 
Chi-square values (Person χ2 = 27.49 at 34 d. f.; p = 
0.778). The asterisks indicate over- or under-representa-
tions of the numbers of the particular DArT and SSR mark-
ers on the chromosomes.
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Table 8: The distribution of DArT markers originated from genomes of various Triticum species across the seven chromosomes of T. 
monococcum.

Marker Name Am map position Am Chromosome Original chromosome Source Clone ID

wPt-1685 0 1Am 1D A-Genome 375942
wPt-7371 84.63 1Am 1B Durum wheat 379045
wPt-3477 84.65 1Am 1B Bread wheat 119840
wPt-0595 85.02 1Am 1A|1B Durum wheat 346277
wPt-1782 85.26 1Am 1A|1B A-Genome 376064
wPt-2150 91.4 1Am 1A|2B Bread wheat 119519
wPt-6053 0.05 2Am 2B Bread wheat 120879
wPt-1601 14.37 2Am 7A Durum wheat 381522
wPt-7524 26.15 2Am 4A Bread wheat 116494
wPt-1920 60.94 2Am 2B Durum wheat 408383
wPt-3114 98.95 2Am 2A Bread wheat 115722
tPt-8937 99.09 2Am 2A Durum wheat 348413
wPt-7015 125.41 2Am 3B Bread wheat 116612
wPt-6802 127.86 2Am 3B Bread wheat 119652
wPt-7350 148.43 2Am 2B Bread wheat 116096
wPt-1480 172.52 2Am 2A Bread wheat 116703
wPt-6662 182.22 2Am 2A Bread wheat 120517
wPt-3281 192.61 2Am 2A Bread wheat 115316
wPt-7326 52.25 3Am 1A Durum wheat 408336
wPt-2379 58.15 3Am 4D Bread wheat 116321
wPt-6204 61.54 3Am 3A Bread wheat 120579
wPt-6891 61.56 3Am 3A Bread wheat 120585
wPt-6460 110.58 3Am 7A Bread wheat 120067
wPt-8876 136.71 3Am 3A Bread wheat 121186
wPt-6509 139.48 3Am 3D Durum wheat 345122
wPt-3165 139.7 3Am 3D Bread wheat 116398
wPt-7340 146.65 3Am 3A|3B Durum wheat 377884
wPt-0244 146.69 3Am 3A|3B Durum wheat 305793
wPt-6643 45.84 4Am 2B Durum wheat 373941
wPt-8897 65.87 4Am 7A Bread wheat 116046
wPt-2371 127.59 4Am 7A A-Genome 376548
wPt-1261 21.8 5Am 5B|5D Bread wheat 120208
wPt-2707 78.22 5Am 5B Bread wheat 120752
wPt-4577 78.71 5Am 5B Bread wheat 116733
wPt-8920 79.54 5Am 7B Bread wheat 116434
wPt-3425 121.62 5Am 7A Durum wheat 380762
wPt-3091 29.23 6Am 6A Bread wheat 116120
wPt-8833 29.26 6Am 6A|6B Bread wheat 115618
wPt-7063 61.3 6Am 6A Bread wheat 115260
wPt-0562 113.39 6Am 6A Durum wheat 345110
wPt-3468 113.93 6Am 6A Bread wheat 116359
wPt-2582 121.36 6Am 6A A-Genome 376551
wPt-3107 38.13 7Am 3B Bread wheat 116406
wPt-3393 68.69 7Am 7A Bread wheat 119701
wPt-3964 71.2 7Am 7A Durum wheat 305423
wPt-2044 71.29 7Am 7A Durum wheat 305067
wPt-4748 71.48 7Am 7A Bread wheat 115379
rPt-4199 71.48 7Am 7A Durum wheat 347395
wPt-7281 93.37 7Am 1A|7A Durum wheat 343649
wPt-4319 125.75 7Am 7B|7D A-Genome 376425
wPt-7763 125.99 7Am 7A|7D Bread wheat 116340
wPt-1359 126.04 7Am 7B|7D A-Genome 376448
wPt-9877 126.42 7Am 7B Durum wheat 346285
wPt-1533 129.34 7Am 7B Bread wheat 117080
wPt-5069 129.4 7Am 7B Bread wheat 116930
wPt-6320 129.67 7Am 7B Bread wheat 116539
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The distribution of χ2 values for individual DArT and SSR loci as a function of the genetic linkage map along the chromosomes in T. monococcumFigure 6
The distribution of χ2 values for individual DArT and SSR loci as a function of the genetic linkage map along 
the chromosomes in T. monococcum. The genetic loci with open symbols fit 1:2:1 or 1:3 ratios of allele segregation fre-
quencies, whereas those with close symbols showed segregation distortion.
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PCR products were diluted to 20-40 times using forma-
mide Li-Cor loading dye, denatured for 5 min at 85°C and
stored on ice before 0.5-0.8 μ1 of the reaction mix was
loaded on Li-Cor 4300 DNA Analyser.

T. monococcum accession diversity analysis and 
comparison with hexaploid wheat
A group of 16 T. monococcum accessions were genotyped
using the custom-built DArT array as described previously
[36]. The polymorphic DArT markers were scored, and
used for clustering analysis using principal coordinate
plots. For genome comparison, genome representations
of nine T. monococcum accessions and 23 hexaploid wheat
varieties were hybridised to a newly built DArT array and
scored the same way. The ploidy levels did influence the
scoring as envisaged in the raw data of the hybridisation
intensity. Therefore, only the DArT markers which were
not affected by this context-dependent scoring were
scored. The nine T. monococcum accessions and 23 hexa-
ploid wheat varieties were hybridised in duplicate.

Genetic mapping and integration of DArT and SSR 
markers
T. monococcum accessions MDR308, MDR002 and 94 F2
individuals derived from a cross between them were gen-
otyped with the custom-built array as described previ-
ously [36]. In total, 300 DArT markers, 90 SSR markers as
well as two morphological trait loci (Ba, black awn; Hl,
hairy leaf) were used for genetic linkage map construction
using JoinMap® 4.0 (Van Ooijen, J.W., 2006, JoinMap®

4.0, Software for the calculation of genetic linkage maps
in experimental populations. Kyazma B. V., Wageningen,
The Netherlands). Because of the inherent dominant
nature of DArT markers which separates the female and
male markers in the repulsion phase, the linkage maps for
maternal DArT markers (scored as a, c) and for parental
DArT markers (scored as b, d) were initially constructed
independently with SSR markers. The two maps for indi-
vidual chromosomal linkage groups were then merged
together using SSR markers as bridges. Assignment of
markers to linkage groups was achieved using logarithm
of the odds (LOD) threshold values ranging from 3.0 to
10.0. The Kosambi's map function was used to estimate
genetic distances. In total, 358 markers including 274
DArT markers, 82 SSR markers and 2 morphological trait
locus markers were integrated into nine linkage groups.
Goodness of fit for all the loci to an expected 1:2:1 or 1:3
segregation ratio was tested using chi-square (χ2) analysis.
The graphical representation of the map was drawn using
GGT2.2 software [64].

Statistical analysis
All statistical analyses were carried out using GenStat (10th

edition, VSN International, UK). For principal coordinate
analysis Jaccard similarity matrices were generated using

the DArT markers. Two-dimensional scores were calcu-
lated and used to generate scatter plot matrices of scores.
For the Mantel test which looks for association between
the off-diagonal values of two similarity (or distance)
matrices, the correlation of the matrices were evaluated.
The DArT markers were subdivided into four different cat-
egories depending on their genome origins and similarity
matrices calculated. The similarity coefficients from these
matrices were then compared pair by pair to form a new
correlation matrix. The significance of each correlation
was assessed using a randomisation test (with 1000 ran-
dom permutations). The p-values were calculated and
were always < 0.001 (where the null hypothesis is one of
zero association). For the Kolmogorov-Smirnov test, the
map position data of the DArT and SSR markers on indi-
vidual chromosomes were fed into GenStat and the p-val-
ues were calculated. The Chi-square goodness-of-fit test
was carried out to examine the random distribution of
DArT markers of different origins across the genome, by
calculating the association between the numbers of the
markers of different origins the chromosomes.

Data deposition
The genetic marker and linkage map data, along with
details and accession numbers for the deposition of raw
data, are freely available at the UK WGIN http://
www.WGIN.org.uk and Monogram http://www.mono-
gram.ac.uk/services.php as well as the GrainGene http://
wheat.pw.usda.gov/GG2/index.shtml websites.
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